Vineyard Wind Monitoring Plan

Steve Cadrin, Kevin Stokesbury, Pingguo He, Kyle Cassidy, Chris Rillahan, ...
School for Marine Science \& Technology

Jeff Kneebone \& Connor Capizzano, New England Aquarium

Crista Bank, Vineyard Wind
 Aquarium

VINEYARD WIND

1

Agenda

- Background on Vineyard Wind Monitoring Plan
- 2019-2020 surveys
- Trawl Survey
- Benthic Survey
- Trap/Plankton Survey
- Highly Migratory Species
- Fishermen \& Scientific Review Recommendations
- Discussion

Monitoring Plan

- Background
- State and Federal Guidance
- Best Practices
- Currently Available Monitoring Data
- Oceanographic Surveys
- Benthic Surveys
- Fish and Invertebrate Trawl Surveys
- Avian Surveys
- Marine Mammal and Sea Turtle Surveys
- Workshops with Fishermen
- Meetings with Regulators
- Recommendations

RECOMMENDATIONS FOR PLANNING
PRE-AND POST-CONSTRUCTION ASSESSMENTS OF FISHERIES
IN THE VINEYARD WIND OFFSHORE WIND LEASE AREA

Steve Cadrin, Kevin Stokesbury and Alex Zygmunt
University of Massachusetts Dartmouth
School for Marine Science and Technology
Department of Fisheries Oceanography
March 262019

Monitoring Plan Guidance

- RI Coastal Resources Management Council (2010) Special Area Management Plan
- relative abundance, distribution, and life stages of commercially and recreationally targeted species in all seasons
- pre-construction, during construction, and post-construction
- include evaluation of survey data collected through an existing survey program
- Bureau of Ocean Energy Management (2013) Fisheries Information for Renewable Energy
- seasonal presence/absence of commercially and recreationally-important fish and shellfish
- Before-After-Control-Impact (BACI) sampling designs
- specifications for trawl and trap surveys
- MA Marine Fisheries (2018) recommended regional studies
- standardize monitoring protocols among lease areas and existing survey programs
- fish and invertebrate species of interest and their habitat
- MA Fisheries Working Group on Offshore Wind Energy - monitoring plans should be coordinated for regional impact assessment

Workshops with Fishermen	Species	New Bedford	Rhode Island	Chatham	Marthas Vineyard
	Lobster	X	X	X	X
	Monkfish	X	X	X	X
	Squid	X	X	X	X
- November-December 2018	Fluke	x		X	x
	Jonah crab	X	X		X
- >100 participants	Scallop	x		X	X
	Tuna	X	X		X
- 63 commercial fishermen	Black sea bass	x			X
	Cod	X			X
	Conch	x			x
	Scup	X			X
\%	Sharks	x	x		
	Skate	X	X		
	Surf clam	X	X		
$\underline{-2}$	Winter flounder			X	x
$=$	Yellowtail flounder			X	X
	Butterfish				X
	Haddock				X
	Herring	x			
	Horseshoe crab			X	
	Mackerel	x			
	Mahi mahi		X		
15 der 5×5	Ocean quahog	X			
	River herring			X	
- Mryenter	Striped bass				X
	Swordfish		X		
	Whiting	x			

5

Monitoring Objectives

- Main Objective: detect impacts of the proposed wind farm on fishery resources.
- The primary question:
- "Does the Wind Farm affect the local density of target fisheries species in the development area?"
- Compare density of each species before-during-after construction in control and impact areas.
- Secondary questions:
- "Does the Wind Farm affect the local size distribution of target fisheries species in the development area?" - sample size distributions from density sample locations
- "Which aspect of the wind farm is affecting fishery resources?" - regional research is needed to answer such broader

Monitoring Recommendations

- Seasonal Fishery Resource Surveys
- Trawl survey
- Benthic survey
- Trap survey
- Plankton survey
- Supplemental Studies
- Analysis of fishery monitoring data to detect impact on highly migratory species
- Egg and larval dispersal
- Movement patterns of juvenile and adult life stages from tagging
- Optical survey transects near turbines
- Monitoring burial of cables
- Monitoring and research on acoustic impacts

RECOMMENDATIONS FOR PLANNING PRE- AND POST-CONSTRUCTION ASSESSMENTS OF FISHERIES

University of Massachusetts Dartmouth
School for Marine Science and Technology
Department of Fisheries Oceanography March 262019

7

Implementing a Monitoring Plan

- A collaborative approach.
- Each survey was designed and conducted in collaboration with active fishermen who have expertise fishing in the area.
- A scientific advisory group reviewed annual monitoring data, data analyses and interpretations to recommend improvements to the monitoring plan if needed.
- Several fishermen reviewed each report and offered local and regional perceptions and recommended revisions to the monitoring plan.
- Today's meeting is intended to get your feedback on the monitoring plan
- Summary of 2019-2020 results (https://www.vineyardwind.com/fisheries-science)
- Your observations from 2019-2020
- Recommendations

FISHERIES STUDIES AND SCIENCE

Vineyard Wind firmly believes that offshore wind developers must support good fisheries studies and science as the offshore wind industry grows up alongside the region's oldest offshore industry- fishing. Fisheries related surveys, studies, and key research milestones are provided below. These studies should be in addition to past and on-going basic research such as conducted by the Bureau of Ocean Energy Management.

All fisheries survey and science reports to Vineyard Wind will be provided here, and updates of key milestones provided below.

RESPONSIBLE OFFSHORE SCIENCE ALLIANCE

$\overline{R \oplus S A}$

Vineyard Wind is supportive of the Responsible Offshore Science Alliance (ROSA), founded in March 2019 by the Responsible Offshore Development Alliance.

ROSA advances regional fisheries research and monitoring related to
offshore wind development in federal waters. ROSA's organizing
framework was developed in partnership with state and federal regulators and support from Vineyard Wind and other offshore wind developers. Learn more about ROSA and it's framework.

ONGOING SURVEYS

Agenda

- Background on Vineyard Wind Monitoring Plan
- 2019-2020 surveys
- Trawl Survey
- Benthic Survey
- Trap/Plankton Survey
- Highly Migratory Species
- Fishermen \& Scientific Review Recommendations

- Discussion

11

Adoption of NEAMAP Trawl and Survey Protocol

NEAMAP trawl

- Three-bridle, four-seam bottom trawl developed by Northeast Trawl Advisory Panel and in use by NEAMAP surveys
- Thyboron IV 66" door
- Uses a "flat-sweep" to reduce escape of fish under the net
- The use of $1^{\prime \prime}$ knotless liner in the codend to retain juvenile fish

NEAMAP survey protocol

- Provides consistency between regional surveys, and possible incorporation of high-resolution data for regional ecosystem assessments
- Tow duration: 20 min
- Tow speed: 3.0 knots
- Daytime only: 30 min after sunrise -30 min before sunset

13

15

2019-2021

8 Seasonal Surveys Completed:

- 2019: June, August, November
- 2020: February, August, November
- 2021: February, May
- 3 Fishing vessels used for the surveys (F/V Guardian, F/V Endurance, F/V Heather Lynn)
- 480 tows made (320 in $501 \mathrm{~N} /$ Control Area)

Species and measurements:

2019-2020

- 53 species retained/identified/measured
- 69,299 individual fish length measurements
- Including ~30,000 individuals with length and weight measurements

2020-2021

- 46 species retained/identified/measured
- 45,197 individual fish length measurements
- Including $\sim 25,000$ individuals with length and weight measurements

Catch	omposition - Main Species (2019										
Species Name		Catch/Tow (Kg)		\% of Total Catch	Tows with Species Present	Species Name	Total Weight (Kg)	Catch/Tow (Kg)		\% of Total Catch	Tows with Species Present
	Weight (Kg)	Mean	SEM*					Mean	SEM*		
Dogfish, Spiny	18392.5	260.8	91.0	43.9	55	Dogfish, Spiny	11174.5	141.7	63.7	23.4	59
Skate, Little	6326.4	81.0	8.2	15.1	78	Hake, Red	8879.7	110.4	17.8	18.6	72
Hake, Silver	4512.5	56.0	6.8	10.8	80	Hake, Silver	7318.7	89.5	11.7	15.3	79
Hake, Red	3574.1	43.8	8.4	8.5	74	Skate, Little	6278.7	78.4	9.1	13.1	78
Skate, Winter	2257.9	28.0	4.4	5.4	50	Butterfish	2563.8	31.8	8.3	5.4	70
Scup	1559.6	20.9	5.0	3.7	31	Scup	2543.8	32.7	7.2	5.3	37
Butterfish	1487.0	18.5	4.1	3.6	72	Skate, Winter	2401.6	29.4	5.1	5.0	47
Alewife	1035.6	12.4	5.7	2.5	51	Haddock	2042.4	25.8	17.6	4.3	9
Skate, Barndoor	376.8	4.5	1.1	0.9	40	Alewife	803.4	10.1	4.1	1.7	61
Squid, Atlantic Longfin	337.2	4.2	0.5	0.8	63	Monkfish	697.1	8.4	1.6	1.5	56
Dogfish, Smooth	323.5	3.8	1.6	0.8	20	Skate, Barndoor	651.0	7.9	2.2	1.4	41
Monkfish	296.3	3.6	0.7	0.7	47	Sea Robin, Northern	556.1	7.1	4.5	1.2	26
Mackerel, Atlantic	197.0	2.5	2.0	0.5	16	Herring, Atlantic	540.3	6.7	2.8	1.1	22
Flounder, Fourspot	195.5	2.5	0.3	0.5	60	Squid, Atlantic Longfin	288.9	3.6	0.5	0.6	60
Herring, Atlantic	194.3	2.4	0.9	0.5	25	Flounder, Fourspot	209.7	2.6	0.3	0.4	60
Crab, Cancer	121.3	1.5	0.3	0.3	57	Flounder, Summer (Fluke)	205.6	2.6	0.5	0.4	36
Flounder, Winter	104.1	1.3	0.3	0.2	45	Shad, American	127.5	1.6	1.0	0.3	24
Sea Robin, Northern	79.5	1.1	0.3	0.2	26	Crab, Cancer	67.6	0.8	0.1	0.1	48
Haddock	77.3	0.9	0.9	0.2	1	Flounder, Windowpane	65.6	0.8	0.2	0.1	35
Flounder, Summer (Fluke)	71.8	0.9	0.2	0.2	32	Squid, Shortfin	64.5	0.8	0.3	0.1	14
Flounder, Windowpane	61.1	0.8	0.2	0.1	47	Dogfish, Smooth	58.4	0.7	0.3	0.1	11
Herring, Blueback	38.2	0.5	0.2	0.1	17	Flounder, Winter	37.0	0.5	0.1	0.1	24
Menhaden, Atlantic	32.3	0.4	0.3	0.1	2	Sculpin, Longhorn	33.0	0.4	0.1	0.1	29
Shad, American	29.8	0.4	0.1	0.1	29	Hake, Spotted	30.4	0.4	0.2	0.1	15

17

Catch Composition - Main Species (2020 - 2021)
 501N Study Area

Total Weight (Kg)	Catch/Tow (Kg)		\% of Total Catch	Tows with Species Present
	Mean	SEM*		
5215.1	64.9	8.4	27.4	75
3754.2	46.6	10.9	19.7	50
3677.2	44.6	20.7	19.3	31
1030.1	12.7	2.0	5.4	46
1015.8	12.6	2.7	5.3	69
878.2	11.0	2.0	4.6	58
686.3	8.6	1.2	3.6	56
575.7	7.2	2.3	3.0	40
472.8	5.9	1.1	2.5	50
275.2	3.4	1.1	1.4	20
223.8	2.8	0.6	1.2	46
177.5	2.2	0.3	0.9	45
152.6	1.9	0.4	0.8	50
148.0	1.9	0.4	0.8	43
100.0	1.2	1.2	0.5	1
99.3	1.2	0.2	0.5	57
82.3	1.0	0.2	0.4	48
66.6	0.8	0.2	0.4	42
59.3	0.7	0.2	0.3	19
56.7	0.7	0.4	0.3	34
54.4	0.7	0.2	0.3	20
47.6	0.6	0.3	0.3	17
37.5	0.5	0.1	0.2	36
32.3	0.4	0.1	0.2	35

Example - Whiting (silver hake)

19

Population Structure

Hake, Silver

Atlantic Longfin Squid

21

Population Structure

Squid, Atlantic Longfin

Fluke (summer flounder)

Population Structure

Flounder, Summer (Fluke)

Trawl Survey Summary

- NEAMAP protocol and survey gear is suitable and useful for monitoring species composition and density in this area.
- There are significant seasonal variation in catch rates and species composition.
- A handful species dominate the catch.
- Based on the first year's results, the projected 240 tows before development would provide sufficient power to detect a moderate change for most important commercial species

Agenda

- Background on Vineyard Wind Monitoring Plan
- 2019-2020 surveys
- Trawl Survey
- Benthic Survey
- Trap/Plankton Survey
- Highly Migratory Species
- Fishermen \& Scientific Review Recommendations
- Discussion

2019 Drop Camera Survey of Benthic Communities and Substrate in Vineyard Wind Lease Area OCSA 0501 North, South, 0522 and a Control Area

27

Marine Fisheries Field Research Group

Survey Areas

- Two surveys were conducted, one in July and October 2019 using the SMAST Drop camera technology

\square

Species Density in 501 North

Species Density in 501 South

 Animal Group

Species Density 522

35

Preliminary Data for 2020

37

Agenda

- Background on Vineyard Wind Monitoring Plan
- 2019-2020 surveys
- Trawl Survey
- Benthic Survey

- Trap/Plankton Survey

- Highly Migratory Species
- Fishermen \& Scientific Review Recommendations

- Discussion

Vineyard Wind Ventless Trap Survey Review

Kevin Stokesbury, Kyle Cassidy, Amanda Meli, Andie Painten, Rachel Norton, Travis Lowery, Crista Bank, Beth Casoni, Mohawk Bolin, and Jarrett Drake

Project Goals and Objectives

- To provide baseline relative abundance data for several species of concern to inform the environmental impact assessment of wind energy development in the 501N Study Area and the adjacent Control Area.
- Our primary objectives are to:
- Estimate the size and distribution of lobster and black sea bass populations in the 501 N Study Area and adjacent Control Area;
- Classify population dynamics of these two species such as length, sex, reproductivity success, age, diet, and disease;
- Estimate the relative abundance and distribution of planktonic species such as larval lobster in the neustonic layer of each area, using a towed ichthyoplankton net at each survey location; and
- Obtain movement patterns of adult lobsters through a tagging study.

One 10 min tow at each station twice per month from June to October

Survey Design

Set and Hauled one string per station twice per month from June to October

Methods

- After a 3 to 5 day soak the contents of the traps were measured, sexed, tagged, and released at each site
- Pots baited with herring
- Tags have ID and phone number

A Floy ${ }^{\text {TM }}$ monofilament anchor tag

43

Lobster Comparison

2019 July-October 8 Sampling Periods

Area	Month	Temp (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \mathrm{N} \\ \text { (Caught) } \end{gathered}$	CPUE	Mean CL (mm)	Sex Ratio (M:F)	\# with eggs	$\begin{gathered} \# \\ \text { Females } \end{gathered}$	Eggers (\%)	$\begin{gathered} \# \\ \text { Disease } \end{gathered}$	Disease (\%)
Impact	All	13.4	214	2.14	91	1.61	32	82	39\%	13	6\%
Control	All	14.5	137	1.44	91	2.43	18	40	45\%	9	7\%
Combined	All	13.9	351	1.80	91	1.88	50	122	41\%	22	6\%

2020 June-October 10 Sampling Periods

Area	Month	Temp $\left({ }^{\circ} \mathbf{C)}\right.$	N (Caught)	CPUE	Mean CL (mm)	Sex Ratio (M:F)	\# with eggs	\# Females	Eggers (\%)	\# Disease	Disease (\%)
Impact	All	12.8	662	4.52	87	1.40	59	261	23%	53	8%
Control	All	13.9	259	1.95	94	3.20	17	60	28%	21	8%
Combined	All	13.3	921	3.24	89	1.74	76	321	24%	74	8%

47

49

51

53

Black Sea Bass Comparison

2019 July-October 8 Sampling Periods

Sampling Period	Area	Month	Temp (${ }^{\circ}$ C)	N (Caught)	N (Measured)	CPUE	Mean Length $(\mathbf{c m})$
$1-8$	Impact	All	13.4	99	97	1.08	33
$1-8$	Control	All	14.5	165	163	2.12	34
$1-8$	Combined	All	13.9	264	260	1.55	33

2020 June-October 10 Sampling Periods

Sampling Period	Area	Month	Temp $\left({ }^{\circ} \mathbf{C}\right)$	N (Caught)	N (Measured)	CPUE	Mean Length $(\mathbf{c m})$
$1-10$	Impact	All	12.8	149	145	1.03	31
$1-10$	Control	All	13.9	307	306	2.31	31
$1-10$	Combined	All	13.3	456	451	1.67	31

2019			
Black Sea Bass			
N (\# Disected)	\# Empty	\#	
w/Contents			

2020			
Black Sea Bass			
N (\# Disected)	\# Empty	\# w/Contents	\% Empty
166	138	28	83%

55

57

Sensor Data

Conductivity, pH and DO sensors were placed at following stations for periods 3-10:

501N Area: ST 1, 7, 11, 12, and 14
Control Area: ST 17, 19, 29, 30

59

Sensor Data

Overview

	2019			2020		
Species	n	$\overline{\mathrm{x}}$	SD	n	$\overline{\mathrm{x}}$	SD
Lobster	351	0.63	1.28	921	0.54	1.20
Lobster Larvae	23	0.19	0.58	91	0.31	0.95
Jonah Crab	1918	3.71	6.43	3828	2.24	5.10
Black Sea Bass	264	1.47	4.44	456	1.59	3.48

61

Agenda

- Background on Vineyard Wind Monitoring Plan
- 2019-2020 surveys
- Trawl Survey
- Benthic Survey
- Trap/Plankton Survey

- Highly Migratory Species
- Fishermen \& Scientific Review Recommendations
- Discussion

An assessment of baseline Highly Migratory Species (HMS) recreational fishing effort in southern New England and the associated wind energy areas

Principal investigators

Jeff Kneebone (jkneebone@neaq.org) Connor Capizzano (ccapizzano@gmail.com)

Anderson Cabot Center for Ocean Life
at the New England Aquarium

UMASS BOSTON

Data contributions from:

Funding support from:

63

Background and Justification

- HMS are the target of the largest recreational fishery in offshore southern New England
- Popular recreational fishing 'spots' fall within wind energy areas
- Limited data on recreational effort of HMS in the region
- No previous attempts to synthesize available data to document HMS fishing effort in wind
energy areas

Large Pelagics Survey

From Maine to Virginia, the Large Pelagics Survey (LPS) collects catch and effort data for tuna, sharks, billfishes, swordfish, and other offshore recreational species. Because trips targeting such highly valued species are relatively rare and require specific fishing methods, a specialized survey is needed to produce precise catch estimates to meet science and management needs.

The LPS consists of three surveys that are administered from June through October: the Large Pelagics Intercept Survey (LPIS), the Large Pelagics Telephone Survey (LPTS), and the Large Pelagics Biological Survey (LPBS). Estimates derived from the LPS are produced each month.

- The Large Pelagics Intercept Survey (LPIS) is a dockside intercept survey that collects information from anglers and for-hire operators returning from trips targeting large pelagic fish. Rather than intercepting individual anglers, the LPIS intercepts individual vessel representatives. It measures the number of fish that were caught, landed, released, and sold; the size of the fish that were landed; the number of anglers who fished; the length and location of their fishing trip; the fishing methods used; and the species targeted.

Goals

- Document the spatial distribution of recreational and for-hire fishing for HMS (tunas, sharks, marlins) in southern New England
- Document temporal shifts in effort for HMS and by species
- Document most popular target species, fishing tactics, and fishing locations in recent years Approach
- Part 1: Survey recreational anglers and charterboat captains to characterize...
- Where they're fishing and how much they're fishing there in a typical year
- What they're fishing for
- How they're fishing
- Part 2: Mine and analyze existing fisheries-dependent data to examine...
- Spatial and temporal extent of HMS fishing effort by species or species group
- Synthesize all data to achieve a more comprehensive assessment of baseline recreational HMS effort

65

Part 1: Survey of Recreational Fishermen

Questions:

1) Where do you fish and how many days do you fish there in a typical year?
2) What species do you typically target?
3) What fishing methods do you use to target those species?
4) Are you a private angler or charterboat captain?

Online survey: August 23, 2019 to March 15, 2020

- Advertised through
- NEAq Social Media

Survey for South of the Vineyard Fishermen

Q1: Where do you fish? How many days do you fish there?

67

Results Q1: Location and Magnitude of Effort

Results Q2: Species Targeted By Sector

Results Q3: Fishing Method By Sector

Part 2: Fishery-Dependent Data: Effort by Species/Species Group

Large Pelagics Survey (LPS)

3,152 records
22 species
2002-2018

Conventional Tagging Data (CTD)

11,268 records
12 species
1954-2019

Fishery-Dependent Data Analysis

- Interpolate effort data on a grid of BOEM lease blocks
- Recreational fishing effort quantified using
- HMS catch records from LPS Intercept Survey
- Number of vessel trips from LPS Intercept Survey
- Number of tagging events that occurred on rod and reel
- Aggregate catch (effort) data into groups
- All HMS
- Bluefin tuna

- Sharks (mako, blue, thresher, sandbar, dusky, etc.)
- Tropical pelagics (yellowfin tuna, albacore tuna, white marlin)
- Compare effort indices between
- LPS Trips vs. Catch
- Recent tagging effort (2002 - 2018) vs. full historical tagging effort
- LPS Trips and tagging events from 2002 - 2018

Timing of the Recreational HMS Fishery

Conventional tagging data (CTD) 2002-2018

LPS Results: Trip vs. Catch Comparison

Large Pelagics Survey: All highly migratory species
By trips (2002-2018)

By catch (2002-2018)

Tagging Events: Full vs. Recent (2002-2018) period

Conventional tagging data: All highly migratory species
Tagging events (1954-2019)

Tagging events (2002-2018)

Events (\#)
0
$1-42$
42-161
161-482

LPS Trips vs. Tagging Events (2002-2018)

All highly migratory species
Large Pelagics Survey: Trip counts (2002-2018)

Conventional tagging data: Tagging events (2002-2018)

Future Directions and Recommendations

- Continue to build the time series
- Administer recreational fishermen survey annually (fall/early winter)
- Incorporate LPS and tagging data beyond 2018 as it becomes available
- Explore additional data sources (VTRs from charter vessels?, MRIP data?)
- Improve the quantity of data collected
- Provide opportunity for respondents to provide more detailed data
- What species do you target at each location?
- What port/state are you fishing out of?
- How fishing effort changed on a finer scale in response to surveying, construction, operation
- Improve quality of data collected
- Achieve more real time monitoring in-season
- Address lag (LPS data not available until >1 yr after a given fishing season)
- Establish a recreational study fleet
- Volunteer private and charter fishing vessels that keep detailed logs on fishing effort over time
- Compare logs in pre-construction, construction, operations phases
- Continue to conduct outreach with fishermen
- Engage other offshore wind developers to design and implement regional monitoring strategy/framework

Fishermen \& Scientific Advisory Group Recommendations

- General

- More advanced statistical analyses may be needed for eventual impact analysis to account for other factors (e.g., date, depth, temperature, bottom type)
- Trawl Survey
- Some refinement of NEAMAP net mensuration criteria is needed
- Power analyses can be updated each year to consider number of stations
- Spring, Summer \& Fall surveys provide similar information
- Benthic survey
- Presence and size of squid egg mops in spring could be valuable based on input from fishermen on appropriate timing

- Trap Survey

- Migration data from tagging will be important for monitoring impacts
- Should consider data from the lobster fishery in the area to interpret results
- Analyses should consider soak time and bait
- Analyze legal and sub-legal sized lobsters separately
- Larval survey
- May need to refine sampling time
- Highly Migratory Species
- A recreational study fleet would be ideal to improve data quality
- Socio-economic data could be considered

Agenda

- Background on Vineyard Wind Nonitoring Plan
- 2019-2020 surveys
- Trawl Survey
- Benthic Survey
- Trap/Plankton Survey
- Highly Migratory Species
- Fishermen \& Scientific Review Recommendations
- Discussion

